Articles

See also  project publications at Google Scholar.

(1)    Simm, J.; Arany, A.; De Brouwer, E.; Moreau, Y. Expressive Graph Informer Networks. In Machine Learning, Optimization, and Data Science; Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Jansen, G., Pardalos, P. M., Giuffrida, G., Umeton, R., Eds.; Springer International Publishing: Cham, 2022; pp 198–212. https://www.springerprofessional.de/expressive-graph-informer-networks/20089896
(2)    Sanchez-Fernandez, A.; Rumetshofer, E.; Hochreiter, S.; Klambauer, G. Contrastive Learning of Image- and Structure-Based Representations in Drug Discovery; 2022. https://openreview.net/forum?id=OdXKRtg1OG
(3)    Roland, T.; Böck, C.; Tschoellitsch, T.; Maletzky, A.; Hochreiter, S.; Meier, J.; Klambauer, G. Domain Shifts in Machine Learning Based Covid-19 Diagnosis From Blood Tests. J. Med. Syst. 2022, 46 (5), 23. https://doi.org/10.1007/s10916-022-01807-1.
(4)    Klotz, D.; Kratzert, F.; Gauch, M.; Keefe Sampson, A.; Brandstetter, J.; Klambauer, G.; Hochreiter, S.; Nearing, G. Uncertainty Estimation with Deep Learning  for Rainfall–Runoff Modeling. Hydrol Earth Syst Sci 2022, 26 (6), 1673–1693. https://doi.org/10.5194/hess-26-1673-2022.
(5)    Vall, A.; Sabnis, Y.; Shi, J.; Class, R.; Hochreiter, S.; Klambauer, G. The Promise of AI for DILI Prediction. Front. Artif. Intell. 2021, 4. https://doi.org/10.3389/frai.2021.638410
(6)    Kratzert, F.; Klotz, D.; Hochreiter, S.; Nearing, G. S. A Note on Leveraging Synergy in Multiple Meteorological Data Sets with Deep Learning for Rainfall–Runoff Modeling. Hydrol Earth Syst Sci 2021, 25 (5), 2685–2703. https://doi.org/10.5194/hess-25-2685-2021.
(7)    Kim, P. T.; Winter, R.; Clevert, D.-A. Unsupervised Representation Learning for Proteochemometric Modeling. Int. J. Mol. Sci. 2021, 22 (23). https://doi.org/10.3390/ijms222312882.
(8)    Hoedt, P.-J.; Kratzert, F.; Klotz, D.; Halmich, C.; Holzleitner, M.; Nearing, G.; Hochreiter, S.; Klambauer, G. MC-LSTM: Mass-Conserving LSTM. ArXiv E-Prints 2021, arXiv:2101.05186.
(9)    Gauch, M.; Kratzert, F.; Klotz, D.; Nearing, G.; Lin, J.; Hochreiter, S. Rainfall–Runoff Prediction at Multiple Timescales with a Single Long Short-Term Memory Network. Hydrol Earth Syst Sci 2021, 25 (4), 2045–2062. https://doi.org/10.5194/hess-25-2045-2021.
(10)    Clevert, D.-A.; Le, T.; Winter, R.; Montanari, F. Img2Mol – Accurate SMILES Recognition from Molecular Graphical Depictions. Chem. Sci. 2021, 12 (42), 14174–14181. https://doi.org/10.1039/D1SC01839F.
(11)    Widrich, M.; Schäfl, B.; Pavlovic, M.; Ramsauer, H.; Gruber, L.; Holzleitner, M.; Brandstetter, J.; Sandve, G. K.; Greiff, V.; Hochreiter, S.; Klambauer, G. Modern Hopfield Networks and Attention for Immune Repertoire Classification. In NeurIPS; 2020. https://arxiv.org/abs/2007.13505
(12)    Svensson, E.; Hoedt, P.-J.; Hochreiter, S.; Klambauer, G. Robust Task-Specific Adaption of Models for Drug-Target Interaction Prediction; 2022., https://openreview.net/forum?id=dIX34JWnIAL
(13)    Hassen, A. K.; Torren-Peraire, P.; Genheden, S.; Verhoeven, J.; Preuss, M.; Tetko, I. V. Mind the Retrosynthesis Gap: Bridging the Divide between Single-Step and Multi-Step Retrosynthesis Prediction; 2022. https://openreview.net/forum?id=LjdtY0hM7tf
(14)    Andronov, M.; Voinarovska, V.; Andronova, N.; Wand, M.; Clevert, D.-A.; Schmidhuber, J. Reagent Prediction with a Molecular Transformer Improves Reaction Data Quality. 2022. https://doi.org/10.26434/chemrxiv-2022-sn2kr.